CORRESPONDENCE

Comments on "The Over-Relaxation Factor in the Numerical Solution of the Omega Equation"

YONEJIRO YAMAGISHI

Japan Meteorological Agency, Tokyo, Japan

Stuart and O'Neill [1] showed results of tests for the optimum over-relaxation coefficients in numerical solutions of the omega equation using one-, two-, and threedimensional forms of the equation. They compared their observed results with the theoretical estimate obtained from an equation given by Miyakoda [2]. One of their conclusions is as follows: for the one- and two-dimensional cases, the optimum over-relaxation coefficients they obtained from tests agree very well with the theoretical estimate. In the three-dimensional cases, however, the observed over-relaxation coefficients are found to be less than the value given by the theory. In other words, cut-off in the empirically determined over-relaxation factor, α , is less than α_{opt} estimated from the analysis. They state that the effect of vertically variable σ , the static stability, resulted in the observed value of α_{opt} being much below the theoretical value which was obtained assuming constant σ .

I was very interested in this conclusion and recalculated the theoretical α_{opt} . Because I obtained some different results, I am making the following comments. According to my calculation, not only in the one- and two-dimensional case, but also in the three-dimensional case, the theoretical values agree very well with Stuart and O'Neill's observed values. Adopting their notation, we may write Miyakoda's equations in the following way:

$$\alpha = \frac{1+V}{K'_{ijp}} = \frac{1+V}{4+2K_{ijp}}$$

$$K'_{ijp} = 4+2K_{ijp}$$

$$K_{ijp} = \frac{a^2 f_0^2}{m^2 \sigma (\Delta p)^2}$$

$$V = C - \sqrt{C^2 - 1}$$

$$C = \left[\left(\frac{4+2K_{ijp}}{(2+K_{ijp})\tau} \right)^2 / 2 \right] - 1 = \frac{2}{\tau^2} - 1$$

$$\tau = \frac{1}{2+K_{ijp}} \left(\cos \frac{\pi}{N_{z-1}} + \cos \frac{\pi}{N_{y-1}} + K_{ijp} \cos \frac{\pi}{N_{z-1}} \right)$$

Table 1.—Comparison of the optimum over-relaxation factors

Grid size	Stuart and O'Neill [1]				Kato		
	α_{opt}		Grid point		αopt	Grid point	
	Theory	Observed	$N_x = N_y$	N_p	Theory	$N_x = N_y$	N_p
1° 1.5° 2° 3°	0. 45 . 44 . 42 . 42 . 33	0. 400 . 250 . 300 . 320 . 225	35 23 17 18 11	6 6 6 6	0. 4019 . 3515 . 3043 . 3055 . 2250	35 23 17 18 11	6 6 6 6

where V is the optimum over-relaxation coefficient. Approximate calculation yielded:

 α =0.420 in the two-dimensional case

 α =0.308 in the three-dimensional case with a=2° lat. grid interval

 α =0.227 in the three-dimensional case with a=3° late grid interval.

The other parameters are the same with those employed by Stuart and O'Neill. Comparing my results with the values given in their tables 2 and 3, I found that my results agree quite well with their observed values but differ greatly from their theoretical values in the three-dimensional cases.

Mr. H. Kato, Japan Meteorological Agency, also examined Stuart and O'Neill's results independently using an electronic computer HITAC 5020 E/F. Table 1 summarizes the comparison of Kato's results with Stuart and O'Neill's values. The one- and two-dimensional cases are omitted. In his calculation he used the same parameters that Stuart and O'Neill employed. From these results, I conclude that also in the three-dimensional case, Miyakoda's equation gives a quite reasonable estimate of the optimum over-relaxation coefficient. The effect of variable σ has less significant influence, at least in the case Stuart and O'Neill treated. Indeed σ does not vary greatly in the troposphere and changes abruptly to a value 10 times larger in the stratosphere. But a large value of σ makes K_{ijp} small which makes α large. Therefore if the effect of variable σ has considerable influence on the determination of α , I speculate the effect should be to make the observed value much larger than the theoretical estimate. Indeed $\sigma=44$ in MTS units gives $\alpha=0.414$, with $\alpha=2^{\circ}$ lat. grid interval, $N_x=N_y=18$, $N_p=6$, and the other parameters being identical with Stuart and O'Neill's.

REFERENCES

- D. W. Stuart and T. H. R. O'Neill, "The Over-Relaxation Factor in the Numerical Solution of the Omega Equation," Monthly Weather Review, vol. 95, No. 5, May 1967, pp. 303-307.
- K. Miyakoda, "Test of Convergence Speed of Iterative Methods for Solving 2 and 3 Dimensional Elliptic-Type Differential Equations," Journal of the Meteorological Society of Japan, Ser. II, vol. 38, No. 2, Apr. 1960, pp. 107-124.

[Received February 5, 1968]

Reply

DAVID W. STUART

Florida State University, Tallahassee, Fla.

Capt. O'Neill and I are indebted to Mr. Yamagishi for his above comments pointing out the error in our paper [3]. Indeed the α_{opt} values from the theory as given in table 1 of his note should replace those given in table 3 of our paper. I must accept the responsibility for this error. After receiving Mr. Yamagishi's correspondence I traced this error to the use of an incorrect value of f_0^2 in the expression for K_{tjp} .

As pointed out by Yamagishi and as seen in his table 1, it appears that our observed α_{opt} values agree well with the theory as developed by Miyakoda [1] even for the three-dimensional (3-D) case. However, some caution must be exerted here. Miyakoda's analysis is developed for K_{ijp} constant and in the cases considered by Stuart and O'Neill [3] (i.e., the quasi-geostrophic omega equation) K_{ijp} varies with pressure due to the variation of static stability $(\sigma = -(\alpha/\theta)\partial\theta/\partial p)$. Focusing only on the 2° grid case with $N_x=N_y=18$, $N_p=6$ and using σ for the standard atmosphere, the correct α_{opt} via the theory is: α_{opt} =0.237 for σ =1.178 MTS units (at 800 mb.), α_{opt} = 0.306 for σ =2.0 MTS units (at 600 mb.), α_{opt} =0.352 for $\sigma=4.0$ MTS units (at 440 mb.) and $\alpha_{opt}=0.414$ for σ =44 MTS units (at 200 mb.). Table 3 of Stuart and O'Neill [3] shows this case to have an observed $\alpha_{opt} = 0.320$ with a sharp cutoff near $\alpha = 0.350$. Hence, for the relaxation scheme used by Stuart and O'Neill for the solution of the 3-D omega equation a choice of $\sigma > 4$ MTS units would have yielded an α_{opt} that led to nonconvergence. In this case the choice of the appropriate σ probably is not too difficult since only one level—200 mb.—had a very high σ and the tropospheric σ could be easily argued to be the most appropriate to yield a theoretical α_{opt} quite close to the observed α_{opt} . Actually the observed α_{opt} falls in the range of Miyakoda's theoretical α_{opt} corresponding to the range of σ but with a weighting toward the lower α 's since more levels have lower σ 's.

In an earlier correspondence (Stuart [2]), I reported on the extension of the model for the 2° grid case to $N_p=11$ (i.e. $\Delta p = 10$ cb.) yet with $N_x = N_y = 18$ as before. Miyakoda's theory gives the following values for the optimum over-relaxation factor: α_{opt} =0.128 for σ =0.944 MTS units, α_{opt} =0.202 for σ =2.0 MTS units, α_{opt} =0.272 for $\sigma=4.0$ MTS units, and $\alpha_{opt}=0.418$ for $\sigma=206$ MTS units. (The first and last values correspond to σ at 900 and 100 mb. in the standard atmosphere.) In the actual solution of the omega equation, σ for the standard atmosphere was employed at all levels yielding an observed $\alpha_{opt} = 0.15$ with a sharp cutoff near $\sigma = 0.20$. Again we see that α_{opt} calculated via Miyakoda's theory has a wide variation depending on the σ value but our relaxation scheme yields an observed α_{opt} well within this variation and heavily weighted toward the lower (tropospheric) σ values. Note that nonconvergence would have occurred if we used an α_{opt} based on $\sigma > 2$ MTS units.

The above comments and the observed results presented by Stuart and O'Neill [3] suggest some changes in our earlier conclusions concerning the α_{opt} value of the 3-D omega equation. Our observed optimum over-relaxation factors agree better with the limited theory than first thought and we now must definitely conclude that Miyakoda's [1] limited analysis is quite useful for selecting the range of α_{opt} for the 3-D omega equation. Since Miyakoda's theory shows α_{opt} to be quite sensitive to the stability factor, σ , in the 3-D omega equation, it is suggested to choose α_{opt} on the low side of the range of Miyakoda's theoretical α_{opt} values as determined using the range of σ appropriate to the problem. For some σ values the α_{opt} as determined by Miyakoda's analysis may lead to nonconvergence when employed in the quasigeostrophic omega equation. Finally, the observed sharp cutoff for α just larger than α_{apt} is still an important feature of our observed α curves.

REFERENCES

- K. Miyakoda, "Test of Convergence Speed of Iterative Methods for Solving 2 and 3 Dimensional Elliptic-Type Differential Equations," Journal of the Meteorological Society of Japan, Ser. 2, vol. 38, No. 2, Apr. 1960, pp. 107-124.
- D. W. Stuart, "Reply" [to Correspondence by James J. O'Brien], Monthly Weather Review, vol. 96, No. 2, Feb. 1968, p. 104.
- D. W. Stuart and T. H. R. O'Neill, "The Over-Relaxation Factor in the Numerical Solution of the Omega Equation," Monthly Weather Review, vol. 95, No. 5, May 1967, pp. 303–307.

[Received February 28, 1968]